Participatory culture as professional development: Preparing teachers to use Minecraft in the classroom

Jeff Kuhn1 | Vance Stevens2

1Ohio University
2Higher Colleges of Technology

As computer-based game use grows in classrooms, teachers need more opportunities for professional development aimed at helping them to appropriately incorporate games into their classrooms. Teachers need opportunities not only to learn about video games as software but also about video games as culture. This requires professional development that embeds educators in the social practice of games while they learn how to play and implement them in classroom practice. This article describes the design considerations around the ongoing TESOL Electronic Village Online (EVO) Minecraft Massively Open Online Course (MOOC) that mimics the social practices around video games by reimagining professional development as a participatory culture. This participatory-culture approach anchors participants’ learning of the video game Minecraft in a multiyear community of educators who share ideas, post videos, blog, and play Minecraft together. This community of practice raises awareness among its participants of the participatory cultures in which our students play video games.

1 INTRODUCTION

This article describes how a community of practice composed mostly of language teachers has recently been striving to overcome a problem that a few years ago many of us did not even know we had. The problem is multifaceted, but in the end comes down to this: How do we as language teachers learn how to engage young language learners in the digital world they inhabit and in
which video games figure largely? The problem for older teachers is that many of us are not familiar with the culture surrounding video games. We may have trouble finding entries into the communities around online games where we can comfortably comprehend how they can be leveraged for student learning—call it a problem of “cultural integration 2.0.” This article describes our solution to the problem as one in which a group of language teachers have formed their own community of practice based around the game Minecraft (Mojang, 2009). This community has attracted experts already immersed to varying degrees in the participatory cultures necessary for moving forward in the game and in its associated learning outcomes. The group has kept the community going for over three years as a TESOL Computer-Assisted Language Learning Interest Section (CALL-IS) Electronic Village Online (EVO) session (for more information on the EVO, see http://evosessions.pbworks.com/).

This article describes, for the benefit of other language educators, how our TESOL EVO online session is designed to emulate the participatory culture around Minecraft, how we foster teachers’ literacy in games through play, and how through meaningful play teachers are able to understand more clearly the value of conducting similar activities in their own classrooms (Kuhn, 2015).

2 | VIDEO GAMES IN THE CLASSROOM

Video games as part of classroom practice are gaining mainstream acceptance. The attributing factors to this acceptance can be broadly stated as the maturation of video games into a media literacy for childhood gamers (some of whom have now turned into educators), and the place of video games as the dominant entertainment of the current generation of students. Much of the body of literature in video games and learning focuses on these young gamers and how video games increase their motivation, engagement, and the learning of academic content (e.g., Cordova & Lepper, 1996; Squire, 2006; Young et al., 2012).

There are many reasons that video games and language learning seem to be compatible. For example, Van Eck (2006) asserts that the challenge facing all educators with regard to using video games rests on how to align games with classroom content; however, for language educators this alignment is eased by the open and fluid nature of language learning. In addition, Thorne (2003) states that users of online spaces such as those found in multiplayer video games form distinct cultures-of-use that require specialized literacy and language. In engaging in these spaces, players will experiment with their identities in ways that facilitate language use (Lee & Hoadley, 2007). Peterson (2010) concurs, asserting that video games are appropriate for the language classroom due to their experience-driven nature, learner-centered design, and roles as spaces requiring a constant negotiation of meaning. Further, Reinhardt and Sykes (2012) advocate for games in the language classroom due to their position as genuine cultural products with strong narratives.

In fact, games would appear to be an ideal fit for language learning; in their meta-analysis of games and learning research, Young et al. (2012) suggest that games and learning hold the most learning potential when used in the language classroom—yet we have not seen as strong of an uptake in the use of games as the data would suggest is possible. Nicholas Carr, himself a gamer, may have hit on a reason for this when he observes that, despite their ability to encourage mastery of discrete skills as players achieve a state of flow in practicing to perfection, “video games tend to be loathed by people who have never played them” (Carr, 2014, p. 178).
3 | PARADIGM SHIFT FOR TEACHERS: VIDEO GAME LITERACY

Games entering the classroom appears to be neither slowed by curriculum fit nor student interest, but by teacher acceptance. Teachers who do not themselves play video games may lack the relevant literacy needed to position them effectively in the classroom. Video game literacy features fundamental differences from more traditional classroom media such as books, videos, and music. Traditional media support literacies that are essentially static and linear in nature and are designed to be consumed for entertainment or enlightenment. They do not change over time, do not respond to input from the consumer, and deliver a relatively singular experience to all consumers. No matter how many times we watch Titanic (Cameron & Landau, 1997), Jack will die, and the Harry Potter (e.g., Rowling, 1997) series of books will end the same way each time we read them. In these texts the user does not make decisions or alter events.

Video games are different. As Bogost (2011) states, video games are “models of experiences rather than textual descriptions or visual depictions of them” (p. 4). The key difference between traditional media and video games is that the latter can allow us to make choices and act upon those choices. As Gee (2003) argued, students can often feel locked out of traditional textbooks because they deal in unchanging, abstract, and depersonalized content. He asserts that games as models of experience are more concrete and personalized. This difference sets video games apart from traditional classroom literacies and experiences, which is why exploring that difference is a much needed first step in educators’ using video games in the classroom. It is a difference that encapsulates the idea of games as a literacy just as much as they are a tool (as discussed by Coiro, Knobel, Lankshear, & Leu, 2010).

If educators make this shift in thinking, they may be able to maximize their pedagogical approaches to capitalize on the affordances of games as a new media literacy different from traditional classroom literacies. As the Pew Internet and American Life Project (2008) suggests, our students likely have literacy in games, but we teachers are less likely to. If we want to leverage games as an educational space, the field must address the need for teachers to be familiarized with games; from learning how to operate a video game controller to understanding the social communities around video games. However, discussion of teacher education in video games and the challenges of implementing video games into teaching practice is sparse.

4 | COMMUNITY-BASED LEARNING: THE KEY TO UNDERSTANDING GAME LITERACY

The implementation of video games into the language classroom may be confounded less by the alignment of video games and content, as Van Eck (2006) asserts, than it is by educators’ lack of literacy in video games. Teachers may be eager to bring games into the classroom but not know where to begin. If we, as educators, want to use video games in the classroom, we first need more robust engagement with teachers, and through this engagement to develop literacy in video games. One way for teachers to do this is to join communities of other players, as our students do.

For our students, game literacy is developed by playing the game within a community of practice (Lave & Wenger, 1991) of fellow gamers, where players learn the rules and social constructs of a game through an interconnected web of peers across a variety of offline and online platforms. We argue that for educators to develop gaming literacy we must reimagine our professional
development in order to to focus less on the video game as software and more on navigating these social spaces and understanding how players engage with them.

4.1 | Big G Game vs. Little g Game

The overarching goal of the EVO Minecraft Massively Open Online Course (MOOC) has been to use the affordances of video games to foster community, so that participants can understand the attraction video games have for our students. Games are experience- and creation-driven, and that is where much of their language learning potential rests. Critically, these characteristics allow for agency; that is, the ability for an individual player to make meaningful decisions within the game. Minecraft provides substantial opportunities for agency for players, allowing them to explore, mine, craft, farm, fight, synthesize, create, and build. Each of these verbs represents a choice the player can make within the game. In the EVO Minecraft MOOC, we wanted to extend a similar level of agency to teachers. As a result, the EVO Minecraft MOOC designers strove to activate for participants as many verbs as possible. Participants can read, write, post, play, create, stream, record, and host within our community of teachers.

Gee (2008) distinguishes a little g game, the software comprising a game such as Minecraft, from the big G Game or social setting where players communicate, collaborate, and share with one another about the game. The desire to give teachers access to learning opportunities that replicate the learning approaches inherent in game communities gave rise to the EVO Minecraft MOOC in 2015. The EVO Minecraft MOOC is a community of educators who learn how to integrate the video game Minecraft, and by association other video games, into their classroom by experiencing it as players first and teachers second. A major goal of the EVO Minecraft MOOC was to provide educators an opportunity to engage in both big G Game and little g game spaces so they could experience games within the same media-rich context as their students.

Further, Gee (1992) asserts that information in the socially driven spaces around video games is “not in anyone’s head, but embedded in the history and social practices of the group” (p. 105). This learning through social interaction creates a participatory culture (Jenkins, Purushotma, Weigel, Clinton, & Robinson, 2009) and represents the larger narrative, or meta-game, that occurs around a particular video game (Kuhn, 2015). Participatory cultures often develop organically and can be challenging to create for a goal as specific as teacher education. In the creation of the EVO Minecraft MOOC we found our theoretical framework aligning with Jenkins et al.’s. (2009) characteristics of participatory culture:

* Relatively low barriers to artistic expression and civic engagement.
* Strong support for creating and sharing creations with others.
* Some type of informal mentorship whereby what is known by the most experienced is passed along to novices.
* Members who believe that their contributions matter.
* Members who feel some degree of social connection with one another. (pp. 5–6)

Placing these characteristics at the heart of the EVO Minecraft MOOC’s design required us to eschew traditional forms of content delivery and instead focus on community participation and communal learning. We support our approach to experiential learning in two game spaces: a Google Plus Community (G+), which supports the game, and a Minecraft server, which hosts the game.
4.2 | The Game: Google Plus Community

We created the G+C for the first EVO Minecraft MOOC in 2015 to allow participants to have a social space to support their Minecraft play and to share their in-game activities, and we have maintained it as our community portal ever since. We designed the G+C home page to be a one-stop game board for everything anyone needed to know about the session and to serve as the EVO Minecraft MOOC’s instruction manual and community forum. In this case, game board connotes a space where, when you arrive there (as you might arrive at a Monopoly game board, or at a stadium where the playing field is the center of focus), you have before you all the elements you need to play; you need only to explore the links found there and work out how the parts fit and flow together in order to access the collective knowledge of the community.

The G+C game board lays out our approach to the game and explains how educators wishing to join us can register as such (as opposed to an anonymous gamer who might neither understand nor share the values of a community of peers focused on pedagogy) and get white-listed on the server (which allows only approved users to log on). Information on the G+C also suggests how users can meet and interact with others in these spaces, what tasks they might want to perform, how they might reflect on their experiences, and how they can earn badges, if they wish, which allow them to document in an open and universally accessible online space exactly what they have accomplished in performing suggested tasks designed to showcase their growing proficiency with Minecraft. When community members go on the Minecraft server that hosts our Internet-connected collaborative play, they find that they learn from one another how to play the game and explore its intricacies. In addition, as they become more proficient with using Minecraft as both a toy and a tool, they come to realize what a rich environment for learning this could be if they can harness it for getting their students to learn what they wish to teach.

4.3 | The Game: Minecraft

The dual approach of having a G+C community and a Minecraft server shifts the underlying design of our professional development and teacher training platform from information delivery to participatory learning. By including both the G+C Community and the game of Minecraft we have shifted from an approach of information delivery to one of action and agency. The focus is on getting participants to engage actively and learn by doing as quickly as possible—through the game of Minecraft—and then to fill in the gaps in their knowledge by accessing the community-curated information in our game on the G+C. In Minecraft our students typically “do first and ask questions later”; we as teachers should have the option to do the same.

Minecraft is an open-world game comprised of blocks and other resources players can use to craft items and build structures (see an example setting in Figure 1). Minecraft is a marked departure from other video games that have become classroom staples and that have a focus on repetition, drilling, and quizzing as the main gameplay features. Minecraft is the opposite; it caters to learning without specifically teaching content (although teachers can configure it to do so). It is entertaining, but involves a considerable amount of critical thinking, engineering, collaboration with others in the game, and flexibility in what players can focus on while playing, which is to say that it creates opportunities for game-enhanced learning (Reinhardt & Sykes, 2014) as opposed to students’ playing games while learning. Teachers and students can proactively create and augment their own learning spaces here; according to Stevens (2017a), “everyone is a maker in Minecraft” (p. 75).
4.4 | Other Game Spaces

The key games literacy concept we want our participants to experience is that socially driven participatory cultures comprise spheres of shared interest that can encompass many online spaces. In addition to the EVO Minecraft MOOC G+C space, there are other Google Plus Communities; for example, the Minecraft for Educators G+C (https://plus.google.com/u/0/communities/113884091278414495934), where participants can interact with more than 5,000 other members. Crowdsourcing occurs in such spaces and particularly in wikis such as The Minecraft wiki (http://minecraft.gamepedia.com/Minecraft_Wiki), a “publicly accessible and editable wiki for information related to Minecraft” (Minecraft Wiki, n.d., para. 1) with over 5,000 articles managed and maintained by hundreds of active contributors, to which “anyone can contribute” (Minecraft Wiki, n.d., para. 1). Resources like these provide just-in-time access to information sought after by gamers who can incidentally develop their reading and foreign language skills if their first language is not English. Similarly, gamers often frequent YouTube (https://www.youtube.com/) for its trove of tutorials, also mostly in English, where they can easily search on topics ranging from how to survive the first night in Minecraft to how to ride horses, tame a mob-spawner, or trade with villagers. Gamers also participate in the community surrounding Minecraft when they develop their own elaborate game worlds, known as maps, which can be digitized in a format that can be loaded onto another server and shared with other players on Planet Minecraft (https://www.planetminecraft.com/).

Another aspect of participatory cultures with potential for language learning is that gamers are highly motivated to communicate with others what they are doing in Minecraft, often posting “Let’s Play” videos on YouTube (https://www.youtube.com/results?q=Minecraft). Players frequently post their video recordings from streaming games using tools popular with gamers such as Twitch (https://www.twitch.tv/), while communicating with other players using voice tools like Discord (https://discordapp.com/) to augment the text chat that is a part of Minecraft. Using Minecraft in the classroom does not require teachers to learn all of these tools, but they should be aware of them in order to maximize community during Minecraft use.
Each of these concordant spaces provides players with avenues to interact with other players and express themselves creatively as they engage in language use and practice around the software of Minecraft. See, for example, in Smoléck, Smoléck, and Stevens (2014), how an 11-year old native Croatian speaker’s fluency in English is attributed to his absorbing YouTube videos in English on the finer nuances of Minecraft. He also learned by creating and posting his own videos, in English, paying forward to the community by showing others what he had learned. He also streamed and recorded (on his channel) his interactions with other gamers with whom he was playing Minecraft and for whom English was likely to be a second language. In this way, improvement in English became an incidental by-product of keen interest in the game.

These online spaces are highly expressive environments where there is ample opportunity for language play along with game play, and where the language is framed within the context of a particular game and its surrounding social community. Teachers can guide students, or, as often happens, students might guide their teachers, to game resources they discover online through their intrinsic interest in the game and its participatory communities. As teachers increase their awareness of the communities surrounding these games they will likely find themselves gravitating to such spaces as their interest in video game software and their awareness of its potential for engaging students in their classrooms increase.

5 | DEVELOPING AND IMPLEMENTING THE EVO MINECRAFT MOOC

Vance Stevens created the EVO Minecraft MOOC in 2015 precisely to address the difficulty teachers have in finding opportunities for learning about games by playing them within participatory cultures. Minecraft is challenging to learn for two reasons: (1) the classic version comes with no instructions or tutorials (apart from those crowdsourced online), and (2) it benefits from being learned in a community setting. The most obvious communities using Minecraft in education involve young learners, and due to concerns with the privacy of minors these communities are usually closed to adult participants. This is a problem for adult educators wanting to learn experientially about Minecraft, because learning how to function in Minecraft with help from a community is an important step to achieving the overriding educational goal, which is to learn firsthand about creating game-like learning environments that are compelling and self-directing and whose basic premises might apply across a range of subjects and classroom contexts.

5.1 | The Google Plus Community and Syllabus

A link to the most current EVO Minecraft MOOC syllabus can be found on the G+C landing page (for EVOMC17, see http://tinyurl.com/evomc17-syllabus). Since our syllabus document and occasional FAQs are posted in this one space, the G+C also allows participants to access information about any aspect of EVO Minecraft MOOC at any time without waiting for that information to be delivered during a particular week.

We created the syllabus for two reasons. One was as a requirement for getting our proposal accepted as a 5-week EVO session (to show that we had thought through a viable pedagogy for our participants), and the other was to provide our participants with a set of steps that could be followed in getting them up to speed with our approach, for the benefit of any participants who might need or expect that level of support. In this sense, the syllabus has served as a compromise bridging traditional professional development platforms and a purely participatory culture approach.
The G+C site has grown as a repository of participant experience, and we witness a decline in reliance on the syllabus with each passing year and a move from information delivery to a robust participatory culture. Our current approach to the EVO Minecraft MOOC has been to allow for agency and learning by playing. We do not expect participants to follow preordained paths through our program. Although we have updated our syllabus through the three iterations of our session to date, in practice our participants have been relying on it less and less, and have been setting their own agendas more and more. We have come to use the community as curriculum model (Cormier, 2008), which encourages the participants to initiate actions that drive what we all do according to each other’s needs and expectations.

As the community becomes more robust and participants carry over from year to year, the knowledge and skills they bring require less top-down direction and control of the community from the moderators. When everyone is an equal participant in the learning of the entire community, participants are empowered “to see new problems, devise new procedures, and in general, makes for diversification rather than for set uniformity” (Dewey, 1929, p. 12). This diversification of learning and content is a hallmark of learning within the literacy of games and is what is needed in preparing teachers to use games for learning.

5.2 | Functional Framework for a Five-Step MOOC

Our functional framework is based on Cormier’s (2010) five steps for coping with a MOOC: orient, declare, network, cluster, and focus. We have found this simple framework to encapsulate perfectly what most typically happens in most EVO sessions time after time. Participants orient themselves in the session as they gather online throughout the first week or even two, and greet each other while working out what they should be doing. At some point they declare their intentions and expectations. Networking can occur within one’s own community but also encompasses interacting with other communities with interests similar to ours. Clustering is a behavior common in MOOCs where there can be hundreds or sometimes thousands of participants. There is no way these people can all move in synch, so what tends to happen is that small clusters of like-minded people meet as in any face-to-face or online social situation and converse apart from other clusters. Many participants find this to be one of the most rewarding aspects of MOOCs—the opportunity to make connections with others in a way that nurtures the growth of a community of practice. Often, these connections tend to carry forward into future projects and collaborations, which is where focus occurs. For example, in the EVO Minecraft MOOC, cluster groups might meet and pool resources to develop certain parts of the server, or they might team together to work on special projects such as building a zombie spawner. Often, participants who join in one session and engage in this way will become moderators with us in future sessions.

Cormier’s steps are meant to help new members cope in a MOOC by characterizing how they will likely self-organize around specific actions or tasks as the community both comes together and then forms breakout groups which might continue to be productive even after the session officially ends. This is not prescriptive; moderators might post reminders in the Minecraft G+C each week to the effect that “now we are in week 3, a week in which we will focus on networking,” but these postings are not intended to dictate individual participants’ learning behaviors. Rather, they serve to mark milestones through the 5 weeks of an EVO session as we focus primarily on the community’s overarching goals.

The G+C space also has the function of nurturing our ongoing community of practice. Unlike with what typically happens in other EVO sessions, instead of wiping clean the G+C at the end of a year’s 5-week EVO session, we leave each year’s posts and community artifacts intact and build
upon these the following year. As new members join, they are able to access the knowledge of past members through the years and contribute to the repository of knowledge and experiences found in the G+C, and thus benefit from the sense of continuity.

6 | EXAMPLES OF COMMUNITY PARTICIPATION

For all the benefits the G+C provides, it is only a platform for information storage and retrieval. To move beyond an information-delivery approach to teacher professional development, and then to a Game-like participatory culture, requires the EVO Minecraft MOOC to function in tandem with a server as a playspace for participants to engage in activity.

Currently, we have three distinct community spaces scattered in as many locations on the Minecraft server supporting our in-game world, each corresponding to a different year of the MOOC. Returning members keep the locations of past communities secret so that new members can experience the thrill of discovering older villages and the remnants of the EVO Minecraft MOOC’s past. After a discovery is made, word spreads quickly on the G+C and other players soon get involved. In Figure 2, Jane Chien, a professor in Taiwan who joined us in 2017, refers to a blog post by Vance (Stevens, 2017b).

A characteristic of participatory culture is the concept that members of the community feel their participation matters. Moments of discovery as shown in Figure 2 are key in in this feeling of participation on the Minecraft server. Koster (2014) warns that “games grow boring when they fail to unfold new niceties in the puzzles they present” (p. 42), yet these niceties are challenging to design and are harder to present in traditional course management system-based teacher development platforms. By leveraging our Minecraft server as a space where participants can engage in action, we can foster active participation in our teacher training that evolves and adapts to participants discovering new materials or creating new content.

One participant, Mircea Patrascu, came to the EVO Minecraft MOOC with a strong computer science background and utilized his computer programming expertise to create subway stations and tunnels connecting villages across the map. One of his early creations was an elaborate roller coaster ride housed in a building which players access by positioning levers acting as logic gates in answer to questions which, when answered correctly, allowed the player access to the building and its rewarding amusement ride (see Figure 3).

Mircea posts tours and tutorials on his Youtube channel (https://www.youtube.com/channel/UC_8FkXifE3Oz17NpYgHgT7T_g) and chronicles his adventures with EVO Minecraft MOOC on his blog at https://evominecraftmp.wordpress.com/. The blog is written as a set of dispatches from someone reporting on the adventures of the explorer, MP, known only by his initials, which perhaps not coincidentally are the same as Mircea’s. The dispatches report in third person on the accomplishments of MP as he appears and reappears after long absences, leaving clues and instructions as to where he has been. They are full of asides such as this one, from Patrascu (2016): “His story was not taken very seriously by anyone, until the owner of the local liquor store told some friends that our hero suddenly paid his years-old debt after he came back from the desert, using a huge diamond,” which the reader clearly understands could only have been acquired in the course of playing the game of Minecraft.

So in reality Mircea’s posts chronicle his wanderings around the EVO server, and when he encounters objects of interest that have been generated by the game, or perhaps created or augmented by Mircea himself, he writes them up in this entertaining way in order to invite others to retrace his steps and in effect retrace the experiences that Mircea has pioneered for his colleagues in EVO.
Anyways, like what Vance wrote about our adventure, it was an unforgettable evening learning about the railing system and minecarts. I was really glad that Rose was there to teach us. Riding the minecarts is like going on rollercoaster rides. I didn’t know where the minecarts would take me or if I would arrive safely but the scenery on the way was fascinating! A railway system that connects the old town EVO2016 with our EVO 2017 is just WOW!

FIGURE 2. Participant Jane Chien is the first EVOMC17 participant to discover the EVOMC16 village

Minecraft MOOC. In so doing he is modeling how his teaching peers might themselves set up quests in Minecraft and entice students to follow them in order to achieve a desired learning goal—in our case, to learn how to create quests for students and experience how interesting they are to resolve. In meeting in Minecraft to pursue Mircea’s quests, we participants learn from each other about collaborating in-game to achieve our goal of learning how to do this with our own students, something we could likely not have learned in any other way. As learners simulating the experience of our students as Mircea models it for us, we stream live what we are doing, speak to one another in Discord while playing, and post recordings of what we have done, as for example, in this YouTube recording of our pursuit of one of Mircea’s quests (https://youtu.be/gG6mtSo1oyE) archived in Stevens (2016).
In the EVO *Minecraft* MOOC, when community members create content, the role of the moderators is to shine a spotlight and give participants a chance to share their expertise. This strong support for participant creation reflects our theoretical framework of encouraging participants to create and share creations with others and fostering members who believe that their contributions matter (Jenkins et al., 2009).

As another example of paying forward to the community, Rose Bard and Linda Gielen redesigned our 2016 server to assist new players by establishing the server’s Post Office—a centralized building featuring maps, mailboxes, and supplies for all participants to share. They did this as participants without the overt consent of the moderators, but with the understanding that this level of involvement in the MOOC is welcomed and encouraged. Linda brought experience as a computer literacy instructor and *Minecraft* expert that has informed the practices of the language teachers in the MOOC (see Figure 4 for an example of her work in the server).

These blog posts, YouTube videos, and player-made creations are commonplace in *Minecraft* culture. If the EVO *Minecraft* MOOC had been traditionally designed, these ideas may have manifested themselves as blurbs on a discussion board and perhaps would have remained abstract ideas with which fellow participants might not have engaged. Moving toward a participatory culture has allowed participants to embed their ideas in Internet technologies that provide them the time to explore *Minecraft*, an opportunity largely missing from traditional professional development. This is borne out by one of our more active participants, Beth O’Connell, a librarian much experienced in *Minecraft* who works with teachers and technology. Beth made this point in one of our online sessions and reiterated it in an email to the authors:

*Educators don’t feel like they have time to play, so they don’t spend the time they need to get comfortable with Minecraft. I think this is part of our society’s bias against play as a worthwhile activity for adults. When I have led sessions on *Minecraft* at conferences, as soon as it was time for play, many participants left.*

(Personal communication, July 24, 2017)
FIGURE 4 Linda Gielen explains her build on the EVOMC16 server, on YouTube here: https://youtube/tyngfA_c0XQ

This is an outcome that the EVO *Minecraft* MOOC is designed to circumvent. Participants-turned-experts in the EVO *Minecraft* MOOC have become staples of the community, and those with the greatest interest in, and sustained commitment to, the community have become moderators in the ensuing years. However, after our first year, when moderators were actively helping newcomers learn to cope in the game, distinctions between moderators and participants became almost negligible. Those with the most significant expertise tend to mentor the weaker players. In this way, informal, just-in-time learning continually percolates through the community as participants of all abilities join quests and adventures. They help each other create structures ranging from safe houses to elaborate devices for spawning mobs for harvesting the loot they provide, curing and trading with villagers, or creating elaborate rail transport networks for moving about the world. Each of these actions, experiences, and content creations enriches the individual participant’s knowledge of how *Minecraft* works and what can be done with it, and each also becomes a historical artifact of the community to be used in future years.

7 CONCLUSION

Our purpose in framing professional development to be as video game–like as possible is to foster a community spirit where no particular individual directs the learning for everyone. In contrast to the traditional classroom experience, games are experience- and creation-driven. These characteristics allow for the ability to make meaningful decisions within a game and have the surrounding community recognize and support these decisions. This shift has not been lost on our participants, as the examples in the previous section show.

Helping our participants learn about games by making their learning as game-like as possible requires a less stringent syllabus and curriculum to direct participants. We want them to be guided by what they want to learn and not by what we want to teach them. This approach challenges us
to spend less of our time as moderators organizing content and devote more time designing opportunities for learning, engagement, and community through play—which is how teachers should strive to use games in the classroom.

The EVO Minecraft MOOC has been designed to encourage the play that is largely absent in professional development by fostering a community of educators where play is encouraged. This play, like that in which our students engage, can be solitary, communal, or both at once. As participant Dakotah Redstone commented, “It seemed that each person I met was playing a different game while in the same world” (Redstone, 2017). This alone/together play style (Ducheneaut, Yee, Nickell, & Moore, 2006) allows EVO Minecraft MOOC participants the opportunity to individually explore the affordances of Minecraft most relevant to their teaching goals while connecting with a community of practice that they can leverage for information, support, or ideas. With a community at hand, participants can quickly overcome what frustrates beginners most and use the available time learning how to take their game up to the next level.

Weaker participants rely heavily on the EVO Minecraft community, and on mentors they encounter there. Some of the best mentors, if participants were lucky enough to have them, were the participants’ own children. Rose Bard noted that “with the amount of tutorials online, EVO MC community to support me and my own son as my mentor, I had no problem getting the hang of it” (Bard, 2016). When Jane first joined us, she used the account of her son, whom she also credited as having been her best mentor.

For other participants, delving into Minecraft has fostered a cultural connection with their students. Participant Robert Ogorek noted, “It’s a wonderful way to engage kids, they hate writing but when I got them to write Steve’s [Minecraft’s main character] adventures … it was one of the few times when they actually did writing in class without any moaning” (Ogorek, 2016). EVO Minecraft MOOC 2015 participant Tamas Lorincz shared with the community that his students “had to write some phrases to associate to 6 topics. One of the topics was Minecraft … [it] had more words than any of the other categories” (Lorincz, 2015).

If we want to engage our students, we need to invest the time to understand the media spaces and digital cultures in which they live and explore how to incorporate them into classroom practice. To do this educators need a space of their own and a community to call their own in which to play. By keeping the guiding design principle of the EVO Minecraft MOOC anchored in play and participatory culture, we are able to encourage participants to drive their own learning and develop an investment in Minecraft, which could in turn lead to support for their learners’ creativity, innovation, and ultimately, language development.

8 | THE AUTHORS

Jeff Kuhn teaches at Ohio University, Athens, OH, United States. He has served as a steering committee member for the TESOL CALL-IS and as co-chair of the CALICO Gaming SIG. An avid Minecraft fan, Jeff has worked with teachers on using games for learning in the United States, Brazil, Venezuela, and the Czech Republic.

Vance Stevens teaches English as a foreign language at the air college of the Higher Colleges of Technology, Al Ain, United Arab Emirates. He is founder of Webheads in Action, edits On the Internet for TESL-EJ, hosts a podcast series Learning2gether with over 360 episodes, and serves TESOL CALL-IS Electronic Village Online as coordinator, plus founder / co-moderator of EVO Minecraft MOOC.
REFERENCES

Lorincz, T. (2015, January 20). Today the kids in class 6 had to write some phrases to associate to 6 topics. One of the topics was (surprise) Minecraft [Google+ post]. Retrieved from https://plus.google.com/communities/112993649763396826671/stream/4d67d94f-c914-4b78-bf37-fb1a4e627585
Redstone, D. (2017, February 23). It seemed that each person I met was playing a different game while in the same world [Google+ post]. Retrieved from https://plus.google.com/communities/112993649763396826671/stream/4d67d94f-c914-4b78-bf37-fb1a4e627585

How to cite this article: Kuhn J, Stevens V. Participatory culture as professional development: Preparing teachers to use *Minecraft* in the classroom. *TESOL Journal*. 2017; e359. https://doi.org/10.1002/tesj.359